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Stowaway: A New Family of Inverted Repeat Elements
Associated with the Genes of Both Monocotyledonous and
Dicotyledonous Plants

Thomas E. Bureau ' and Susan R. Wessler
Departments of Botany and Genetics, University of Georgia, Athens, Georgia 30602

Members of a new inverted repeat element family, named Stowaway, have been found in close association with more
than 40 monocotyledonous and dicotyledonous plant genes listed in the GenBank and EMBL nucleic acid data bases.
Stowaway elements are characterized by a conserved terminal inverted repeat, small size, target site specificity (TA),
and potential to form stable DNA secondary structures. Some elements are located at the extreme 3’ ends of sequenced
c¢DNAs and supply polyadenylation signals to their host genes. Other elements are in the 5' upstream regions of several
genes and appear to contain previously identified cis-acting regulatory domains. Although the Stowaway elements share
many structural features with the recently discovered Tourist elements, the two families share no significant sequence
similarity. Together, the Stowaway and Tourist families serve to define an important new class of short inverted repeat
elements found in possibly all flowering plant genomes.

INTRODUCTION

The majority of interspersed repetitive DNA in eukaryotes has
been suggested to be transposable elements or their remnants
(Flavell, 1986). Moreover, some highly repetitive families of
transposable elements are frequently associated with genes.
Several human gene sequences, for instance, harbor the
retroposon Alu (~10°% copies per haploid genome) and the
long interspersed nuclear sequence (LINE) L1 (~105 copies
per hapioid genome) (Berg and Howe, 1989). The proximity
of transposable elements may influence the expression of the
neighboring cellular genes by activating cryptic or supplying
cis-acting regulatory regions (Clemens, 1987; Paulson et al.,
1987; Baumruker et al., 1988; Stavenhagen and Robins, 1988;
Banville and Boie, 1989; Chang-Yeh et al., 1991; Goodchild et
al., 1992; Maichele et al., 1993).

Flowering plants have genomes that are on average much

larger than those of other higher eukaryotes and are thought -

to have a correspondingly larger number of transposable
elements (Bennett and Smith, 1991). Some known plant retro-
transposons occur at high copy number in their host genomes
(Grandbastien, 1992). The de/2 (dispersed element of lilies)
element, for example, constitutes 4% of the lily genome (Leeton
and Smyth, 1993). Previously, we have described a recent
insertion of a mobile element, Tourist-Zm1 (Zea mays), in a
maize waxy allele (Bureau and Wessler, 1992). This element
was found to be a member of another highly repetitive trans-
posable element family associated with more than 30 wild-type
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genes of cereal grasses listed in nucleotide data bases (Bureau
and Wessler, 1992, 1994). Tourist is characterized by terminal
inverted repeats (TIRs), small size, target site preference (TAA),
and potential to form stable DNA secondary structure. In this
report, we describe a new family of transposable elements,
named Stowaway, which are similar in structure but not in se-
quence to Tourist and are associated not only with listed gene
sequences of cereal grasses but also with dicotyledonous plant
genes. Furthermore, the fact that some Stowaway elements
contain previously identified cis-acting regulatory regions pro-
vides evidence that this new family has contributed to the
evolution of host gene expression.

RESULTS

Identification of Stowaway in Higher Plant Gene
Sequences

The Tourist-Sb5 (Sorghum bicolor) element, located at the
extreme 5’ end of the sorghum phosphoenolpyruvate carbox-
ylase CP21 gene sequence (Lepiniec et al., 1993; Bureau and
Wessler, 1994), is interrupted by a 257-bp insertion (Figure 1).
The presence of an imperfect TIR and a flanking 2-bp direct
repeat (TA) suggests that this insertion, similar to Tourist, may
be atransposable element. We have named this new element
Stowaway-Sb1.
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Figure 1. Position of Stowaway-Sb1 within Tourist-Sb1.

The disrupted Tourist-Sb1 (top diagram, open boxes) in the 5 flanking
region of the sorghum phosphoenolpyruvate carboxylase CP21 gene
(transcription start site, bent arrow; 5’ coding sequence, black rectan-
gle) has been expanded to show the position of Stowaway-Sb1. Triangles
indicate the position of TIRs.

To determine if this element was a member of a larger fam-
ily, computer-assisted sequence similarity searches of the
GenBank (version 77.0) and EMBL. (version 34.0) nucleic acid
data bases were performed using Stowaway-Sb1 as a query
sequence. As new Stowaway elements were identified, these
sequences were also used as queries. New Stowaway elements
were defined as sequences that shared not only significant
nucteotide similarity (>60% overall sequence similarity be-
tween any two elements), but also other structural features
characteristic of the family, including TIR sequence similarity,
target site duplication size, secondary structure, and overall
length. Members of the Stowéway family that were identified
in this way are listed in Table 1. Surprisingly, 47 plant sequences
were identified as harboring Stowaway elements. Although sev-
eral more degenerate sequences (<60% overall sequence
similarity with another element and/or only partial structural
similarity with Stowaway) were identified, only the best matches
are presented. Whereas Tourist elements were found only
within selected cereal grasses, the Stowaway family has a much
wider distribution, with members in both monocotyledonous
and dicotyledonous plants.

Although sequence similarity between elements ranges from
45 to 85% (Figures 2 and 3 and data not shown), Stowaway
family members share several other features. First, Stowaway
elements have a conserved 11-bp TIR with an overall consen-
sus sequence of CgpTggCg3C79Ce2Te2CasCeaG77 T Tes (NUM-
bers in subscript refer to the percent occurrence). Second,
Stowaway elements are small, ranging from 80 to 323 bp.
Whereas the monocotyledonous elements are variable in size,
the dicotyledonous elements are considerably more homog-
enous (248 * 24 bp). In general, the reported Stowaway
elements found in monocotyledonous plant genes are more
similar to one another than to elements found in dicotyledon-
ous plant genes and vice versa (Figures 2 and 3 and data not
shown). Third, Stowaway elements are AT rich (72 + 5%).
Fourth, Stowaway has a strong target site preference; ~85%
of the Stowaway elements listed in Table 1 have TA targets
(Figures 2 and 3 and data not shown). Among plant transpos-
able elements characterized to date, only Tourist and Stowaway
have target sequence preference (Bureau and Wessler, 1992,

1994). A TA target site sequence is also characteristic for mem-
bers of the /S630-Tc1 (transposon of Caenorhabditis) family of
transposable elements (Doak et al., 1994). There is, however,
no significant sequence similarity between 1S630-Tct family
members and Stowaway. Fifth, Stowaway elements have a
potential to form DNA secondary structures (Table 1; Figure
4). Stowaway-Zma3, for example, can be folded into a perfect
hairpin except for a 1-bp mismatch. The FB elements of Dro-
sophila (Smith and Corces, 1991) and Tc6 of Caenorhabditis
(Dreyfus and Emmons, 1991) also have the potential to form
hairpin-like structures but lack significant sequence similar-
ity with Stowaway.

Evidence for Element Insertion

Although Stowaway family members have structural features
of transposable elements, it was important to obtain evidence
for element mobility in both monocotyledonous and dicotyle-
donous plants. To this end, two approaches were utilized.
Stowaway-St5 (Solanum tuberosum), Stowaway-Ps1 (Pisum sati-
vum), and Stowaway-Le2 (Lycopersicon esculentum) have
inserted into dicotyledonous plant genes that belong to gene
families (paralogous loci) or are members of a group of ho-
mologous genes that have been previously isolated from
closely related species (orthologous loci). Alignment of the
sequences flanking these elements with paralogous and or-
thologous loci indicated that these elements correspand exactly
with insertion polymorphisms (Figure 5). To provide evidence
for element mobility in monocotyledonous plants, polymerase
chain reaction (PCR) was employed to amplify introns harbor-
ing Stowaway-Os3 (Oryza sativa) and Stowaway-Zm3 from
orthologous loci of closely related species or of cultivars within
the same species. In each case, insertion polymorphisms were
identified that corresponded precisely to the location of
Stowaway and a TA target site duplication, thus revealing the
site of a relatively recent insertion event (Figure 5).

Stowaway Elements Contain Previously Identified
cis-Acting Regulatory Domains

A subset of the Stowaway elements that are located in the 5’
flanking regions of plant genes harbors previously identified
cis-acting reguiatory domains. Sequences in the Stowaway-Le2
element (located within the promoter of a tomato gene encoding
the small subunit of ribulose-1,5-bisphosphate carboxylase),
for instance, contain ~50% of the sequences protected in a
DNase footprinting assay (Manzara et al., 1993). In addi-
tion, Stowaway-Le1 shares ~80% sequence similarity with
Stowaway-Le2 and occupies ~65% of a negative regulatory
domain identified within the LAT59 promoter (-804 to —418,
relative to the start of transcription) (Twell et al., 1991). Simi-
larly, two putative embryogenesis-specific nuclear factors bind
within the internal sequences of the Stowaway-Dc2 (Daucus
carota) element of carrot (Hatzopoulos et al., 1990), and



Table 1. Stowaway Elements Associated with Plant Gene Sequences Listed in the GenBank and EMBL Data Bases

Element®  Locus Name Gene Description® Position® Size (bp)  A°G References®

Monocotyledonous Plants

Os1 OSHSP82A Heat shock protein 82A in2 (2150) 150 ~58.0 NA

Os2 RICAMYC a-Amylase C 3" (1667) 245 -70.1 Kim and Wu (1992)

Os3 OSWAXY Starch synthase in13 (3049) 234 -771 Wang et al. (1990)

Os4 OSWAXY Starch synthase 3’ (4046) 204 —-445  Wang et al. (1990)

Os5 OSPCNAGEN PCNA 5 (~432) 122 -47.1 Suzuka et al. (1991)

Os6 OSPCNAGEN PCNA 5 (~1315) 227 -91.4  Suzuka et al. (1991)

Os7 OSRAMY3A a-Amylase 3A in2 (405) 234 -60.7 Sutliff et al. (1991)

Zm1 ZM27KZNB 27-kD zein J'UTR/3' (830) 163 -24.7  Das et al. (1991)

Zm2 ZMAZ22KD 22-kD zein 3’ (4195) 156 -30.0 Thompson et al. (1992)

Zm3 ZMAYSPG P in2 (4760) 80 -545  Athma et al. (1992)

Zm4 M23537 10-kD zein 3 (591) 153 —-27.8  Kirihara et al. (1988)

Zm5 ZMGAPC4 GAP dehydrogenase in3 (1444) 157 -384 Kersanach et al. (1994)

Shi SCFSCPEPCD PEP carboxylase in6 (2675) 267 -75.1 Albert et al. (1992)

Sb1 SVPEPCGX PEP carboxylase 5' (-469) 255 -50.7 Lepiniec et al. (1993)

Sb2 SVPEPCGX PEP carboxylase in6 (3231) i3 -42.3  Lepiniec et al. (1993)

Tat S$117442 Metallothionein 5’ (- 505) 167 -49.9 Kawashima et al. (1992)

Ta2 TAAAM254 a-Amylase 2/54 5' (-458) 100 -405 Huttly et al. (1992)

Hv1 HVBKIN12G Protein kinase in2 (1747) 81 -30.7 Halford et al. (1992)

Hv2 BLYRCABG Rubisco activase RcaA in3 (839) 159 -40.3 Rundle and Zielinski (1991)

Hv3 BLYGLB2 1,3-1,4--Glucanase in1 (166) 323 -87.8  Wolf (1991)

Hv4 BLYCLDAA Cold-regulated protein 3'UTR (604) 49¢ ND Cattivelli and Bartels (1990)

Hvba HVPRP1A Pathogenesis related (Hv-1a) 3'UTR (636) 128 ND Bryngelsson and Gréen
(1989)

Hv5b HVPRP1B Pathogenesis related (Hv-1b) 3'UTR (647) 36 ND Bryngelsson and Gréen
(1989)

Hvbc HVPRP1C Pathogenesis related (Hv-1c) JUTR (604) 93f ND Bryngelsson and Gréen
(1989)

Dicotyledonous Plants

Pst PEALCTN Lectin 5' (- 1296) 275 -64.9 Mandaci and Dobres (1993)

Ps2 PEACAB80 CAB binding protein 5 (-615) 276 -56.5  Timko et al. (1985)

Pct PCPR2G Pathogenesis related (PR2) 5 (-415) 243 -80.0 Van de Lécht et al. (1990)

Dct DCDC8 DC8 5 (~514) 253 -65.8  Franz et al. (1989)

Dc2 $47635 DC59 5 (- 409) 249 . —78.1  Hatzopoulos et al. (1990)

Bnt BNEPSPG EPSP synthase in5 (1835) 220 -43.6 Gasser and Klee (1990)

Bn2 BNAC2PROMO Cruciferin 5 (-1147) 247 -41.7 Breen .and Crouch (1992)

Sa1 SASCHSG Chalcone synthase 5 (-334) 260 -57.7 Batschauer et al. (1991)

St1 STWIN12G Wound induced 5 (-139) 259 -53.1 Stanford et al. (1989)

St2 STRBCSH Rubisco small subunit in1 (337) 285 -49.2 NA

St3 STPROINI Proteinase inhibitor 3'(1393) 240 —-37.0 Lee and Park (1989)

St4 POTPATA Patatin in2 (922) 259 -67.3  Mignery et al. (1988)

St5 STPATP1 Patatin pseudogene in5 (4378) 226 -34.8 Pikaard et al. (1986)

St6 STPOACS8 Actin in3 (1426) 167 -41.6 Drouin and Dover (1990)

Let LELAT5S Pollen maturation specific 5’ (- 656) 260 -51.6 Twell et al. (1991)

Le2 LERBSS1 Rubisco small subunit 5 (-275)- 251 -40.2  Manzara et al. (1993)

Le3 TOMATPACA Ca?*-ATPase 5 (-114) 290 —-65.5  Wimmers et al. (1992)

Le4 TOMPHEAMLY PAL 5’ (—494) 248 —-43.1 NA

Nt1 NTT85A Auxin binding protein in2 (622) 225 -50.7 NA

Nt2 NTCHN50 Endochitinase 5' (- 209) 244 —-46.1 Fukuda et al. (1991)

Npt1 TOBPMA1A H*-ATPase in2 (443) 247 —-40.2  Perez et al. (1992)

Ns1 NTNIA2 Nitrate reductase in1 (1041) 249 —-46.5  Vaucheret et al. (1989)

Nr1 NRTYS8 tRNA-Tyr 5 (-62) 75¢ ND Fuchs et al. (1992)

Ph1 PETEPSP EPSP synthase 5 (—1025) 243 —-39.0 Benfey et al. (1990)

Ph2 PHCHSD Chalcone synthase D 5 (-115) 221 -39.3 Koes et al. (1989)

Ph3 PHCHSG Chalcone synthase G in1 (884) 257 -62.7 Koes et al. (1989)

2 0s, Oryza sativa (rice); Zm, Zea mays (maize); Sh, Saccharum hybrida (sugarcane); Sb, Sorghum bicolor (sorghum); Ta, Triticum aestivum
(wheat); Hv, Hordeum vulgare (barley); Ps, Pisum sativum (pea); Pc, Petroselium crispum (parsley); Dc, Daucus carota (carrot); Bn, Brassica
napus (rape seed); Sa, Sinapis alba (mustard); St, Solanum tuberosum (potato); Le, Lycopersicon esculentum (tomato); Nt, Nicotiana tabacum
(tobacco); Np, N. plumbaginifolia; Ns, N. sylvestris; Nr, N. rustica; Ph, Petunia hybrida. Stowaway-Os3 has been previously referred to as Tnr1
(transposable element in rice) (Umeda et al., 1991).

5 PCNA, proliferating cell nuclear antigen; GAP, glyceraldehyde-3-phosphate; PEP, phosphoenolpyruvate; CAB, chorophyll a/b binding pro-
tein; ESPS, 5-enolpyruvylshikimate-3-phosphate; PAL, phenylalanine ammonium-lyase.

¢ 5, 5' flanking region; 3', 3’ flanking region; in, intron sequence; UTR, untranslated region. Positions (given in parentheses) are relative to
the translation start site. The position of Stowaway-Nr1 is relative to the start of transcription.

d Kilocalorie per mole; ND, not determined.

¢ NA, not available.

fOnly partial sequence available.
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Figure 2. Multiple Sequence Alignments of Stowaway Elements Associated with Monocotyledonous Plant Genes.

Two base pairs immediately flanking the termini of each Stowaway element were included in the multiple alignment. The alignment is one of
many possible optimal multiple sequence alignments and does not necessarily reflect the best pairwise relationship between any two Stowaway
elements. Stowaway-Hv3 and truncated elements (see Table 1) were omitted from the alignment. Conserved nucleotides are indicated by white
letters on a black background.

Stowaway-St1 occupies ~45% of an upstream region impor- Hv-1 transcript is polyadenylated at a different site within
tant for wound inducibility in potato (Stanford et al., 1989, 1990). Stowaway sequences (Figure 6). This may indicate either that

In addition to the identification of Stowaway among genomic these related elements (>93% sequence similarity) have mul-
sequences, elements were also found in four barley stress- fiple sites for polyadenylation or that the minor sequence
induced mRNAs (Table 1). Whereas one of these mRNAs was differences influence poly(A) site selection.

inducible by cold temperature stress (Cattivelli and Bartels,

1990), the remaining three transcripts (Hv-1a, Hv-1b, and Hv-1c)

were derived from members of a gene family that encodes DISCUSSION

pathogenesis-induced thaumatin-like proteins (Bryngelsson

and Gréen, 1989). The presence of Stowaway at the same po-

sition in all three Hv-1 transcripts indicates that insertion In this report, we describe an element family named Stowaway,

predates the amplification of this gene family. Interestingly, each which was first identified as an insertion in a member of another
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Phl EWAGEGHICHY. pCE TTTETTAAACTC e BNTTEAAGTCAAAC TAMAY S ATTTRETG
LIS ERARETCTT TTPRITTTCTTAARCTC CGiJ NN Y TCEAGTCAAACTANNST CHTI ATV AAT[STAAT A

Psl PRITAT . pFNCCRRNGGA CR{ThG CERNGHIG A CRYAPEEN A NEF AR CEVATEER TS YT T TIC AL EA T[XCA
Ps2 AATA@ TAT[YT T[CALYETRITIL A ATeLF P XA ETTARR'A'AACK'AA“TTT T...CANEWAA T2NCAN
Stl EVVATANGICESVCGTAAAANGEYTEGHISAALNS ST T TARYNG TRRYTEVACE L & LY A SARAACTATALICAN
Ph3 EW\GAT TATATCCCAAA TR TCCHIAGT TpyA G ATIRAT T LR RIALVARAAGGIAAAGIGATC ,
st4 EWWY TETAT YO SNT TAMSIITCEVIAGINTARAMTIART T CCGA‘TG'A'G%.

CTTAAAARGGGAAAEGGAGGGEG“A
QWTAAAARNGGHN }\CGF‘A GTA|

Le3 AATTGGCATATHAAGAA JWICCGGHT AN e ARG TiLRIT TEANTST[&) CIRAWT CloA AW TET A
Dc2 GE\TAAA. ATA“TAAT T TEANAETC ATERT G GRYCEVATEPNGIIC C GG CABEVAT AleF ¥ .¥.\T C T GEXC|
st 6 QITIAGEEYGGT CALYNGHCEANNCEANT TEIICHCTC GAGLY\GC ARV W YIARG A VXFIAIY VARG

ACGGAGGGAGTA|
AACRN\GARNGGAGTA

Figure 3. Multiple Sequence Alignment of Stowaway Elements Associated with Dicotyledonous Plant Genes.

Stowaway-Ph2, Stowaway-Sal, and truncated elements (see Table 1) were omitted from the alignment. See legend to Figure 2. Abbreviations
are as given in Table 1.

family of transposable elements, Tourist. More than 30 genes insertion of Tourist-Zm?1. In addition, the locations of Tourist ele-
from several grasses harbor the transposable element Tour- ments in other genes correspond with insertion polymorphisms
ist; they are short (113 to 343 bp), have the potential to form at orthologous loci. Despite the fact that Stowaway shares no
DNA secondary structures, are AT rich, and have a preference significant sequence similarity to Tourist, these two families
for insertion at the trinucleotide TAA (Bureau and Wessler, 1992, of elements have strikingly similar structural features. For in-
1994). Tourist elements have a mobile history because a maize stance, Stowaway elements are short, are AT rich, have the

mutant waxy allele was found to be caused by the recent potential to form DNA secondary structures, and have target
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A

Jat

AA

Zm3 Hv2 Pc1

Figure 4. Stem-Loop Structures of Stowaway-Zm3, -Os7, -Hv2, and -PcT.

The outline of each folded element is shown (horizontal lines correspond‘{:

to a base pair). The dinucleotide direct repeats immediately flanking
the elements were not included in the predicted DNA secondary struc-
tures. Pc, Petroselinum crispum.

insertion site preference. This suggests that the Stowaway and
Tourist families are members of a larger class of elements that
probably transpose by a similar mechanism. The presence
of Tourist in maize, sorghum, rice, and barley indicates that
Tourist is probably ubiquitous in the genomes of cereal grasses.
Computer-assisted data base searches revealed that Stowaway
elements are found in the genomes of both monocotyledonous
and dicotyledonous plants, indicating that the Tourist/Stowa-
way superfamily of mobile elements is an important component
of the genomes of possibly all flowering plants.

Mobility of some Stowaway elements is evident by their cor-
respondence to insertion polymorphisms between orthologous
and pafalogous loci. Such polymorphisms also verify that the

Stowaway target site is a dinucleotide (preferentially TA). Ex-

amples of Stowaway mobility given in Figure 5 indicate that
element activity has occurred on an evolutionary time scale.
For instance, Stowaway-Os1 was identified in intron 2 of the
heat shock protein 82A gene of domesticated rice, O. sativa,
and other A genome-type rice species (Table 1 and data not
shown). The absence of Stowaway-Os7 in non-A-genome-type
rice species (Figure 5D) suggests that the Stowaway-Os7 in-
sertion corresponds to the approximate divergence date of the
A genome (~14 to 17 million years; Dally, 1988). In contrast,
it appears that Stowaway-Zm1 has transposed into intron 2 of
the maize P gene much more recently because an insertion
polymorphism was identified between orthologous loci of two
maize inbred lines (Figure 5E).

The mechanism of mobility of the Tourist/Stowaway element
superfamily remains unknown. The presence of TIRs is
reminiscent of inverted repeat elements that transpose via a
DNA intermediate or “cut-and-paste” mechanism (Bureau and

_STRBCS3

A

STPATP1 . TTTCTTAATHTA TN TATAATAGAARA
STPATP2 TTTCTTAATATAL—~—m—————m TGAAAGGAAA
POTPATA TTTCTTAATATAL-——-—-—-u- TGGTAGAAAR
STPATG  TTTCTTAATATAl----———=-- TGATAGGAAA
B

PEACABS0 TATAATTAA | AR VAR | TATATACTAGTT
PEACAB66 TATAATTAAQCA}-~--—----- TATACTAGTA

C

LERBSS1 TCTTGTCTA' TAAAATAT*AAA

TCTTGTCTANTA) ————~=~=~— AAATAT*AAA

‘Osativa GGTTGTCT LA *P R I TACTATGAATTA
Opuncat GTTTGTCTAATAF--—-—=—--—~ CTATGAATTA
Oeichin ATTTGTTTAARTAl---==~=-=-— CTATAAATTA

E

maizW22 TCTATATATHTA| RN TATGTACTAGGC
maizMo20 TCTATATATATAL----———w—= TGTACTAGGC
teosZmm TMTATATATATA|---—-———-—-~-— TGTACTAGGC

Figure 5. Polymorphisms Corresponding to Stowaway Insertions into

Dicotyledonous and Monocotyledonous Genes.

(A) Stowaway-St5 is located within intron 5 of the potato patatin pseu-
dogene (STPATP1) but not in the corresponding position of three other

- members of the patatin gene family (STPATP2, POTPATA, and STPATG).

(B) Stowaway-Ps2 is located in the 5 flanking region of the pea CAB80'

) {PEACABBS0) gene but not in CAB66 (PEACAB66), another member

of the CAB gene family in pea.

(C) Stowaway-Le2 is located in the &' flanking region of the tomato rbcS7
gene (LERBSS1) but not in the corresponding position of the potato
rbeS3 gene (STRBCS3). An asterisk indicates a short variable region

" (LERBSST1, 7 bp; STRBCS3, 16 bp).

(D) Stowaway-Os1 is located within intron 2 of the heat shock protein
82A gene of Oryza sativa (Osativa) but not in the wild rice species
O. puncata (Opuncat) and O. eichingeri (Oeichin).

(E) Stowaway-Zm3 is located within intron 2 of the maize P gene of
the inbred line W22 (maizW22) but not in the M020 (maizMo20) in-
bred line or in the teosinte, Z. mays subsp mexicana {teosZmm).
In all cases [(A) through (E)), significant sequence similarity extends
past the region delimited. The presumed TA target sites are boxed,
and dashed lines indicate gaps corresponding to the Stowaway ele-
ment and one copy of the target site.
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Hv-la EH [ ] ] An
Hv-1b B 1 | An
Hv-lc F ——mm 1 | 1 An
— 10 bp

Hv-la  CTTAATACTCCCTTCGTTCCTARATAL ATATATCTTTTAAGAGATTTTACTAATGGACAACATAC TAAGIGAATGT
Hv-1b  CTTAATACTCCCTTCGTTCCTARATACAGIATAAATCTTTTGGAN
Hv-lc  CTTAATACTCCCTCCGTTCCTARATA! AT CTTTTAAGAGATTTTACTAGTGGACTACATAC TAAGTGAATGT
Hv2 TACTCCCTCTGTTCTTAAA--——— TATAAGTCTTTTAAGCGATTTCATCAAGAAACTACATACAAAACAAAAAGAATGAATCT
Hv-la ATACTCTAAAGTATATHTATAAACATCTATATGTAGTTTCCTAR
Hv-1c  ATACTTTAAAGTAn
Hv2 ACACTCTAAAGTATGTCTATATACATCCGTATGTAGT--CCTTAGTAGTGAAATCTAAAATGACTTATATTATGGAACGGAGGGAGTA

Figure 6. Polyadenylation Sites of Three Hv-1 Gene Family Members Occur in Stowaway Sequences.

(A) Schematic of the 3' ends of three Hv-1 transcripts showing the positions of putative polyadenylation signals (open rectangles) in Stowaway
sequences (black rectangles with open arrowheads extending to the poly[A] addition sites [A]). .

(B) Sequences of the 3’ ends of each Hv-1 transcript aligned with the Stowaway-Hv2 element (located within intron 3 of the barley Rubisco activase
gene). The inverted repeat (black arrows), direct repeat (open arrows), putative polyadenylation signals (boxed sequences), and poly(A) tails (A,)

are indicated. Gaps (dashed lines) were introduced for optimal alignment.

Wessler, 1992, 1994). It cannot be ruled out, however, that Tour-
ist and Stowaway are solo long terminal repeats (LTRs) because
the LTRs of some retroelements also have TIRs, albeit short
(~5 bp). Retroelements transpose via an RNA intermediate
and do not excise. The absence of detectable excision events
in our study does not necessarily support the notion that Tour-
ist and Stowaway are solo LTRs because excision for these
family of elements may be rare and/or precise.

Although Stowaway and Tourist elements share no significant
sequence similarity to other previously reported transposable
elements, some aspects of their structures are reminiscent of
the 1S630-Tc1 transposon superfamily (Berg and Howe, 1989;
Dreyfus and Emmons, 1991; Doak et al., 1994). Members of
this superfamily share significant transposase sequence
similarity and, similar to Stowaway, have a TA target sequence
preference. Interestingly, the 1.6-kb Tc6 element of Caenorhab-
ditis, a Tci-like element, consists of a 765-bp TIR and has the
potential to form inverted repeat DNA secondary structures
similar to that of Tourist and Stowaway elements (Dreyfus and
Emmons, 1991). Because no Stowaway element identified to
date contains a significant open reading frame that would en-
code a transposase, it would be premature to suggest that
Stowaway is a member of the /S630-Tc1 superfamily. Further-
more, elements belonging to the 1S630Tc1 superfamily have
been found in many diverse species but have not as yet been
identified in plants.

The correspondence of Stowaway element location with pre-
viously identified cis-acting regulatory domains provides strong

evidence that these elements have influenced the evolution
of normal genes. For instance, Stowaway-Hv4 and Stowaway-
Hv5 (Hordeum vulgare) provide polyadenylation signals and
polyadenylation sites for their host genes. In addition, some
elements (i.e., Stowaway-Le1, Stowaway-Le2, Stowaway-Dc2,
and Stowaway-St1) may provide cis-acting regulatory regions
to downstream genes. Previous reports of transposable ele-
ments supplying the cis-acting regulatory domains of normal
genes are restricted to retrotransposons and retroposons. For
example, the retrotransposons LTR-IS/MuRRS (murine
retrovirus-related sequence), RTVL-H (retrovirus-like element
with a histidine tRNA primer binding site), and THE-
(transposon-like human glement) provide polyadenylation sig-
nals for the mouse A1, human PLT (placental LTR terminated),
and THE-1-containing genes, respectively (Paulson et al., 1987,
Baumruker et al., 1988; Goodchild et al., 1992). The retropo-
son B2 has been identified in the 3’ ends of several mouse
transcripts, and, in one example, provides alternative polyad-
enylation signals for the mouse y-phosphorylase kinase gene
(Clemens, 1987; Maichele et al., 1993). Furthermore, a VL30
(virus-like element encoding 30S RNA)-like retroviral inser-
tion confers androgen sensitivity on the mouse sex-limited
protein gene (Stavenhagen and Robins, 1988), and IAP
(intracisternal-A particles)-derived solo LTRs supply the bro- .
moters of the rat oncomodulin and mouse MIPP (mouse
IAP-promoted placental) genes (Banville and Boie, 1989;
Chang-Yeh et al., 1991). Because the regulatory requirements
of most plant genes that harbor Stowaway elements are poorly
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characterized, we are uncertain of the extent of element in-
volvement in the regulation of these genes.

Finally, it is important to note the role played by computer-
assisted sequence similarity searches in the discovery of the
Stowaway and Tourist families. Because many of these de-
generate elements share less than 65% sequence identity over
their length, standard hybridization protocols would not have
been useful in identifying family members. In light of the enor-
mous amount of sequences currently being generated by
several genome projects, similar data base searches will un-
doubtedly lead to the identification of other elements and
provide additional examples of the intimate association of mo-
bile elements and normal genes.

METHODS

DNA Sequence Analysis

The UWGCG (University of Wisconsin, Madison, Genetics Computer
Group) and IG (IntelliGenetics, Inc., Mountain View, CA) computer pro-
gram suites were accessed through the BioSciences Computational
Resource, University of Georgia, Athens, GA. Data base searches were
conducted using the programs FASTDB (IG), FASTA (UWGCG), and
BLAST (National Center for Biotechnology Information, National In-
stitutes of Health, Bethesda, MD) (Devereaux et al., 1984; Altschul et
al., 1990). Pairwise and multiple alignments of element sequences were
performed using the programs GAP and PILEUP (UWGCG), respec-
tively. A gap penalty of 3.0 and gap length penalty of 0.3 were used,
and complete elements were compared with their ends weighted. Mini-
mum energy folding of element sequences was performed using the
program FOLD (UWGCG) with DNA base pair and stacking energies
as described previously (Breslauer et al., 1986). DNA secondary struc-
tures were visualized using the program SQUIGGLES (UWGCG).

DNA Manipulations

Oryza sativa (International Rice Research Institute [IRRI], Los Bafios,
The Philippines, accession number IR25587-109-3-3-3-3), O. puncata
(IRRI accession number 103006), and O. eichingeri (IRRI accession
number 101422) genomic DNA was obtained from G. Kochert (University
of Georgia, Athens). Zea mays subsp mexicana (accession litis 28620)
germplasm was acquired from J. Doebley (University of Minnesota,
St. Paul, MN), and genomic DNA was isolated as previously described
(Dellaporta et al., 1983). Oligonucleotides were synthesized correspond-
ing to the sequences within or flanking intron 2 of the following genes.
Nucleotide positions relative to the start of translation are given within
parentheses. In the rice heat shock protein 82A gene (GenBank locus
name OSHSP82A), the primer sequences are 5-CATCTGGGGAGC-
AGCTTGGG-3 (1558 to 1577) and 5-TGAGGCGGCGCTCTTCAAGG-3
(2481 to 2462); in the maize P gene (Athma et al., 1992), the primer
sequences are 5-ACACTGCGGACCGTGAGAGG-3' (4510 to 4529) and
5-GAGGTGGCTGGCGATCAGGG-3' (5029-5010). Polymerase chain
reaction (PCR) amplification was performed as previously described
(Bureau and Wessler, 1992), except that an annealing temperature of
65°C was used. PCR products were checked by agarose gel electro-
* phoresis and cloned into a TA plasmid vector (invitrogen, San Diego,

CA). Plasmid DNA isolation and dideoxy sequencing were performed
using Qiagen (Chatsworth, CA) plasmid miniprep and Sequenase
(United States -Biochemicals) kits, respectively, as directed by the
manufacturers.
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