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Recent studies of rice miniature inverted repeat transposable

elements (MITEs), largely fueled by the availability of genomic

sequence, have provided answers to many of the outstanding

questions regarding the existence of active MITEs, their

source of transposases (TPases) and their chromosomal

distribution. Although many questions remain about MITE

origins and mode of amplification, data accumulated over the

past two years have led to the formulation of testable models.
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Abbreviations
IS5 insertion sequence 5

MITE miniature inverted repeat transposable element

MLE Mariner-like element

ORF open reading frame

PIF P instability factor

Tc1 transposon of Caenorhabditis elegans 1

TE transposable element

TIR terminal inverted repeat
TPase transposase

TSD target site duplication

Introduction
The transposable elements (TEs) discovered in maize by

Barbara McClintock [1] are now called class 2 or DNA

transposons. This is to distinguish them from class 1

transposons or retrotransposons, which are not the subject

of this review. DNA transposons usually have short term-

inal inverted repeats (TIRs) and encode a transposase

(TPase). This TPase binds in a sequence-specific manner

to the ends of the TPase-encoding element and to other

non-autonomous elements that do not encode TPase but

have the same or very similar TIRs. TPases are a group of

diverse enzymes that have been used to classify DNA

transposons into superfamilies that are mobilized by

related TPases. For example, the maize Ac element is

a member of the hAT superfamily, which includes ele-

ments such as hobo from Drosophila and Tam3 from Anti-
rrhinum that have related TPases.

Miniature inverted repeat transposable elements (MITEs)

are a subset of non-autonomous DNA transposons that

have a suite of characteristics that distinguish them from

other class 2 non-autonomous elements. MITE families

have very high copy number (up to several thousand

copies), structural homogeneity, and phylogenies that

are consistent with rapid and extensive amplification of

one or a few ‘master’ copies followed by inactivity and

drift [2-4,5�]. Because MITEs do not encode any TPase

or TPase remnant, their classification has been based on

shared TIR and target site duplication (TSD) sequences.

In plants, most MITEs fall into one of two superfamilies;

they are either Tourist-like or Stowaway-like on the basis

of their similarity to two elements originally identified in

maize and sorghum, respectively [4,6,7]. Both groups are

distinguished from all previously described plant trans-

posons by their having a target sequence preference (i.e.

TAA for Tourist-like and TA for Stowaway-like MITEs).

Whereas DNA transposons were originally isolated from

unstable mutant alleles, virtually all MITEs have been

identified through computer-assisted database searches.

In this way, Tourist-like MITEs have been shown to be

widespread in plants and animals, whereas Stowaway-like

MITEs are widespread in plants [3].

A survey of mined plant MITEs from the rapidly expand-

ing database indicates that there are MITE families that

may not fit into either of the major groups [8–11]. Some of

these families are likely to be derived from established

plant DNA-transposon superfamilies such as CACTA,

hAT or Mutator [3,11,12]. In a few cases, the copy number

of these elements was reported to be in the thousands

[13], but these MITE families are not discussed in this

review because they are poorly represented in Arabidopsis
and rice.

MITEs: the highest-copy-number TEs in rice
Although MITEs were first discovered in maize, the

paucity of maize genomic sequence has restricted the

questions that could be answered in this member of the

grass family. The value of rice genomic sequence in

MITE research was apparent from the first systematic

study of the repetitive DNA in 105 rice genes, all of the

available rice genomic sequence at the time. The results

of this study demonstrated that there are many families of

MITEs in rice, and that MITEs were the most abundant

TE type in the non-coding regions of rice genes [14].

Since the initiation of the International Rice Genome

Sequencing Project (IRGS) in 1998 [15], the availability

of increasing quantities of genome sequence has enabled
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comprehensive analyses of MITEs and other rice TEs.

Rice has been validated as a model grass for the study of

DNA transposons as it has become apparent that its

genome contains virtually all the major element families

found in other grasses [9,16,17]. In addition, the wealth of

rice resources, including the genomic sequences of the

two cultivated subspecies (indica and japonica) and the

availability of thousands of diverse cultivars, provides the

material necessary to analyze the impact of TEs on

genome evolution [18,19].

A key challenge to the genome-wide analysis of MITEs

has been the identification of all MITE sequences in a

given genome. Because of their lack of coding capacity

and low interfamily sequence similarity [14], new MITE

families cannot be easily identified on the basis of

sequence similarity to known families using programs

such as BLAST or RepeatMasker. Instead, several new

computational tools have been developed for MITE

identification. RECON is a program that recovers all

classes of repetitive sequence (including MITEs, see

below; [20�]). FINDMITE identifies MITEs on the basis

of their structural features, such as the presence of TIRs

and TSDs [21]. MITE analysis kit (MAK) is a program

specifically developed to extract known MITE family

members and to identify related TPase-encoding ele-

ments present in the same database [22�]. MAK has been

successful in linking two rice MITE families with their

respective autonomous elements [22�].

Approximately 26% of the rice genome sequence is

derived from TEs; of this, the amounts derived from

class 1 and class 2 elements are comparable (15% and

11%, respectively) [23]. The rice genome contrasts with

the larger grass genomes in which long terminal repeat

(LTR) retrotransposons account for more than half of the

genomic DNA [24]. In terms of element copy number,

however, the rice genome contains far more class 2

elements than class 1 elements, largely because of the

presence of around 90 000 MITEs (Figure 1). Analysis of

the sequences of assembled rice chromosomes revealed

that MITEs are mainly distributed in the chromosomal

arms (i.e. in gene-rich regions), whereas retrotransposons

are concentrated in the heterochromatic regions around

the centromeres [25,26]. Unlike the situation in the rice

genome, the Arabidopsis genome contains almost equal

numbers of copies of class 1 and class 2 elements (Figure 1).

However, the different types of TEs in Arabidopsis occupy

the same chromosomal niches as those in rice, with

most class 1 elements being located in pericentromeric

regions whereas MITEs and other class 2 elements are

enriched in the gene-rich chromosomal arms [5�,27,28].

Isolation of an active MITE
A major obstacle to the further characterization of MITEs

was overcome when the first active MITE was isolated

from rice. Three studies, published simultaneously,

reported that the first active rice DNA transposon was

a 430 bp Tourist-like MITE called mPing. In one study, a

chromosome walk to an unstable, g-ray-induced allele of

slender glume (slg) led to the identification of mPing [29��].
Excision of mPing from the slg allele, which resulted in the

reversion to wildtype, provided the first direct evidence

that MITEs are capable of both insertion and excision. In

another study, mPing was identified following its activa-

tion in a cell culture derived from anthers of Nipponbare

rice, a japonica cultivar [30��]. In addition, a putative

autonomous element, called Ping, was co-activated with

mPing. Ping is a 5353 bp element and its terminal

sequences (of 252 bp and 178 bp) are identical to those

of mPing except for a single base-pair mismatch, clearly

indicating that mPing is a recent deletion derivative of

Ping. In the third study, mPing was identified through

a novel computational approach that utilized RECON,

a program for de-novo repeat identification [20�,31��].
Manual inspection of more than 1200 repeat families

led to the identification of mPing as a candidate for an

active MITE. Activity was confirmed following trans-

poson display analysis of the DNA from an indica cultivar

(called C5924) and its derived cell line (which had

previously been shown to activate retrotransposons

Tos10, Tos17, and Tos19 [32]). Transposon display is a

modified amplified fragment length polymorphism

(AFLP) technique that can visualize hundreds of TE

insertions simultaneously [4]. Thirty-two out of 35 new

insertions of mPing in the cell line were into single-copy

sequences of the rice genome, suggesting that the pre-

viously noted association of MITEs with genes most

probably reflects a strong insertion preference.

Figure 1

Rice Arabidopsis

Non-LTR retrotransposons
LTR retrotransposons
MITEs
Other DNA transposons
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The relative contributions of different TE groups to the total TE copy

number in rice and Arabidopsis. Copy numbers of rice TEs were

extrapolated from Jiang and Wessler [23], Turcotte et al. [9], and

Goff et al. [18]. The copy numbers of Arabidopsis TEs are taken

from the Arabidopsis Genome Initiative [27] and C Feschotte
(unpublished data).
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A puzzling result from the third study was the failure to

detect the putative autonomous Ping, either in C5924 or

in any of the other indica cultivars tested. Thus, although

mPing is clearly a deletion derivative of Ping, it has not

been mobilized in the C5924 cells by using the products

of Ping. Instead, a database search identified a related

element, Pong, as the most likely source of TPase for

mPing. Consistent with such a role, Pong was transposi-

tionally co-activated with mPing in the C5924 cells [31��].

Pong and PIF are the likely autonomous
partners of Tourist MITEs
Pong is related to an active transposon from maize, P
Instability Factor (PIF), and both elements are founding

members of the newly described superfamily of eukar-

yotic DNA transposons called PIF/IS5 (insertion seq-

uence 5) [33]. Elements in this superfamily harbor two

open reading frames (ORFs): ORF1 and ORF2. ORF1

may encode a DNA-binding protein, as it contains a

domain with weak similarity to the myb DNA-binding

domain [31��,34�]. ORF2 probably encodes the TPase,

as it contains an apparent DDE catalytic motif and

shares amino-acid homology with the TPases of some

IS5-like bacterial insertion sequences. Members of the

PIF/IS5 superfamily also have similar TIRs and target-

site specificity. Recently, a comprehensive survey re-

vealed the presence of PIF/IS5-like TPases in a large

number of plant, animal and fungal taxa [34�]. In plants,

PIF/IS5 elements comprise two clades (PIF-like and

Pong-like), each represented by multiple distinct line-

ages that diverged before the separation of monocots and

dicots [34�].

A genome-wide survey of the PIF/IS5 superfamily in

rice resolved more than 200 TPase-encoding elements,

belonging to 27 PIF-like families (OsPIFs) and 26 Pong-

like families (OsPongs) [34�]. Once these elements were

identified, their relationships with Tourist-like MITEs

could be established. Most Tourist-like MITEs (28 of

31 families tested; �45 000 elements) in rice could be

associated with either the OsPIF or the OsPong families on

the basis of TIR sequence identity and/or additional

sequence similarity in their sub-terminal regions [34�].
Approximately 60% of the Tourist-like MITE families,

however, lacked sequence similarity beyond their TIRs

with any existing OsPIFs or OsPongs. Both this result and

the co-mobilization of mPing with Pong in the C5924 cell

line raise the interesting possibility that many families of

Tourist-like MITEs have been mobilized by elements

from which they have not descended by deletion.

Associations between PIF/IS5 elements and Tourist-like

MITEs have also been documented in maize and Arabi-
dopsis [33,35]. For example, the founding member of the

superfamily, PIF from maize, is related to a family of

Tourist-like MITEs called mPIF [33]. Although PIF/IS5
elements have not been well characterized in animals,

relationships of PIF/IS5 elements with Tourist-like

MITEs have been reported in nematodes, insects and

fish [3,36–38]. The best examples are from the genome of

the African malaria mosquito (Anopheles gambiae), in which

at least three of the 11 PIF/Pong-like families have clearly

given rise to Tourist-like MITEs (X Zhang, SR Wessler,

J Tu, unpublished data).

Mariner-like elements are the likely
autonomous partners of Stowaway MITEs
As mentioned above, most plant MITEs have been

classified as either Tourist-like or Stowaway-like. From

the initial discovery of Stowaway elements almost a dec-

ade ago, similarity was noted between these elements and

members of the well-characterized DNA transposon

superfamily Tc1/mariner: the two groups of elements

have the same TSD (50-TA-30) [6]. However, Tc1/mariner
elements were thought to be absent or rare in plants,

whereas hundreds of these elements had been described

in animals and fungi [39–42].

A series of studies indicate that Tc1/mariner transposons

are actually widespread and diverse in plant genomes, and

have probably given rise to very large populations of

MITEs [43,44�]. Evidence connecting a plant MITE

family with a Tc1/mariner transposon was first obtained

by analyzing the genome sequence of Arabidopsis.
Homology-based searches revealed that Emigrant, the

first MITE family to be identified in this species with

about 200 copies [45], probably originated by internal

deletion from the larger Lemi1, which has coding capacity

for a pogo-like TPase [43]. Pogo-like elements form a

distinct subgroup of the Tc1/mariner superfamily, with

representatives previously described in invertebrate, ver-

tebrate and fungal species [41,46].

There appear to be no (or only a few) Emigrant-like

MITEs or pogo-like elements in the rice genome. There

are, however, tens of thousands of Stowaway-like MITEs

in rice and in the genomes of a wide range of flowering

plant taxa [6,9,14,23]. If Tc1/mariner elements have mobi-

lized Stowaway MITEs, it follows that Tc1/mariner should

also be widespread in the genomes of flowering plants.

This was shown to be true using a combination of data-

base searches and a polymerase chain reaction (PCR)-

based approach that exploited newly designed plant-

specific primers for mariner-like TPases [44�]. Phyloge-

netic analyses of more than 100 TPase sequences

revealed the existence of multiple, divergent and ancient

lineages of a plant-specific group of mariner-like elements

(MLEs), which harbor a distinctive ‘DD39D’ signature

in their TPases [44�]. These results suggest that the

sequence diversity of MITEs within and among plant

genomes reflects a diversity of trans-activating TPases,

and provides support for the hypothesis that MLEs are

the autonomous elements responsible for the spread of

Stowaway MITEs in many plants.
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Recently, this hypothesis was tested further by taking an

inventory of the MLE and Stowaway families that co-exist

in the rice genome and analyzing their sequence relation-

ships in detail [47��]. The rice MLEs (called ‘Osmar’

elements) were grouped into 26 families, with fewer than

three full-length members per family. By contrast, more

than 22 000 Stowaway MITEs were identified and

grouped into 36 families with copy numbers ranging from

a few dozen to several thousands. Comparison of all Osmar
and Stowaway elements led to the surprising discovery

that sequence similarity was restricted to their TIRs, and

that association between the Osmar and Stowaway families

was confined to characteristic motifs in their TIRs. These

motifs were, in turn, diagnostic of distinct phylogenetic

clades of MLE TPase. Together, these results provide

evidence for a functional relationship between Stowaway
MITEs and Osmar TPases [47��].

Cross-mobilization and the amplification
of MITEs
Taken together, comparative analyses among the 90 000

MITEs and about 250 PIF-like, Pong-like and mariner-

like transposons present in the rice genome uncovered

surprisingly few instances of MITE families that are

directly related to larger elements [34�,47��]. One way

to explain this situation is to view the origin and the

amplification of MITEs as two separate steps that can

occur at different times. That is, MITE precursors may

have originated through internal deletion of ancient (and

now extinct) autonomous elements, but their amplifica-

tion occurred later when transposase encoded by younger

autonomous elements fortuitously recognized the older

MITE and catalyzed its transposition. In this scenario,

the young autonomous elements are presumably descen-

dants or ‘cousins’ of the elements that gave rise to the

founding MITE. According to this model, the majority of

MITEs in rice have been amplified in this way by the

process called cross-mobilization [47��].

An alternative explanation is that MITE amplification

was followed by the loss of parental autonomous elements

from the genome; that is, there has been a differential

retention of MITEs rather than autonomous copies over

time [47��]. MITEs, with their small size and very high

copy numbers, may have a greater chance of persisting

and accumulating in genomes than larger and low-copy-

number elements, which might be eliminated more

rapidly by drift and/or selection. The discovery that the

mPing family was not mobilized in C5924 cell culture by

the element it was derived from, Ping, but is most prob-

ably mobilized by Ping’s relative Pong supports the notion

that cross-mobilization plays a central role in the ampli-

fication of MITEs [31��].

Conclusions
MITEs were discovered more than a decade ago as short

repetitive elements that associated with many genes in

grass species. Although numerous MITEs were subse-

quently identified and characterized in other plants as

well as in animals, the origin and TPase sources of these

small elements remained mysterious. The recent avail-

ability of large quantities of genomic sequence, especially

from rice, has facilitated a variety of studies that have

answered many questions and furnished material neces-

sary for future analysis. It is now clear that MITEs are

non-autonomous DNA elements that are capable of both

insertion and excision. Their association with genes is

most likely due to a strong insertion preference for low-

copy sequences. The majority of MITEs have most

probably originated from two large and diverse super-

families of DNA elements, Tc1/mariner and PIF/IS5.

Future studies will undoubtedly focus on the interaction

of MITEs and their autonomous partners, the regulation

of MITE transposition, and the impact of MITE ampli-

fication on host genomes. Clearly, rice will continue to

play a central role in MITE research.
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