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Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key
traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use
of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of
generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted
transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently dis-
covered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to
soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation
events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental
stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is
developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the
highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean
genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for
insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an
effective transposon-tagging resource.

Soybean (Glycine max) is a key component of mod-
ern agriculture due to the high protein and oil content
of its seed and the lower fertilizer inputs required
because of its nitrogen-fixing capacity (Singh and
Shivakumar, 2010). The desire to understand the un-
derlying genetics of these traits has prompted the
recent sequencing of the soybean genome (Schmutz
et al., 2010). Sequence annotation predicted at least
46,430 genes (Schmutz et al., 2010), with another study

identifying up to 55,616 (Libault et al., 2010). While
homology to characterized proteins can be used to
predict gene function for a few genes, the vast majority
of the genes are uncharacterized. Determining gene
function using gene silencing or overexpression strat-
egies is feasible, however the lack of high-throughput
transformation in soybean limits the scope of these
approaches. Therefore, alternative tools for identifying
soybean genes are needed.

Insertional mutagenesis using T-DNA can be a
powerful tool to connect genotype to phenotype,
when coupled with high-throughput transformation
as was done with Arabidopsis (Arabidopsis thaliana).
The absence of a comparable transformation system
for soybean makes T-DNA tagging impractical. How-
ever, insertional mutagenesis by an active transpos-
able element would facilitate soybean gene discovery.
The only transposon-tagging tool that has been char-
acterized for soybean is the Ac/Ds system (Mathieu
et al., 2009). TheDs element primarily produces linked
insertions in maize (Zea mays), tobacco (Nicotiana
tabacum), and Arabidopsis (Dooner and Belachew,
1989; Jones et al., 1990; Bancroft and Dean, 1993). For
Ds to be an effective mutagen in soybean, many Ds
elements would have to be inserted throughout the
genome by transformation. While this was possible in
Arabidopsis where transformation is very efficient
(Muskett et al., 2003; Nishal et al., 2005), it is not a
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viable strategy in soybean. In another legume species,
Medicago truncatula, the Tnt1 retroelement is an effec-
tive mutagen (d’Erfurth et al., 2003). However activa-
tion of Tnt1 usually requires tissue culture (d’Erfurth
et al., 2003), which limits throughput and has the po-
tential to induce other genomic or epigenetic changes
(Kaeppler and Phillips, 1993).
A transposon that exhibits many of the desired traits

for transposon tagging is the mPing element from rice
(Oryza sativa; Jiang et al., 2003; Kikuchi et al., 2003;
Nakazaki et al., 2003). mPing is a 430-bp miniature
inverted repeat transposable element that transposes
at a high frequency and has reached high copy num-
ber in some rice cultivars (Naito et al., 2006). It is a
nonautonomous deletion derivative of the Ping ele-
ment, which lacks the two open reading frames (ORF1
and Transposase [TPase]) required for transposition. In
Arabidopsis, mPing was mobilized by expressing the
ORF1 and TPase proteins from either Ping or the
closely related Pong element (Yang et al., 2007). Most of
the resulting insertions were located near genes (68.6%
, 1 kb from a gene) and were shown to be unlinked to
the original transgene. Unlike most DNA transposons
that often cause indels (called footprints) at the site of
excision, mPing excision sites are repaired precisely at
a high frequency (99% and 82%) in both yeast (Saccha-
romyces cerevisiae; Hancock et al., 2010) and Arabidop-
sis (Yang et al., 2007), respectively. These transposition
characteristics indicated that mPing could be suitable
for transposon tagging, with the caveat that heritable
insertions had not been shown in hosts other than rice.
The objective of this work was to evaluate the suit-

ability of mPing as a mutagenesis tool in soybean. The
analysis included identifying heritable mutations and
their frequency, characterizing the insertion site pref-
erence, and determining the extent to which precise
excision of mPing occurs.

RESULTS

mPing Excision and Transformation

The pICDS-mP plasmid developed by Yang et al.
(2007) was adapted for soybean transformation by
changing the selectable marker from kanamycin to
hygromycin resistance. The resulting plasmid, named
pPing (Supplemental Fig. S1), contains an mPing gfp
reporter construct (Fig. 1A), which only expresses gfp
upon excision of the mPing element (Yang et al., 2007).
The Ping proteins are expressed from a Ping cDNA
containing the ORF1 and TPase coding regions (Yang
et al., 2007). After transformation of soybean embry-
ogenic tissue, hygromycin-resistant clusters were se-
lected and assigned event numbers. PCR analysis was
used to identify 10 events that were PCR positive for
ORF1, TPase, and mPing.
PCR based on primers that flank the mPing element

was used to detect transposition, as a smaller amplicon
is produced after element excision (Fig. 2A). Two

developmental stages of somatic embryo development
(globular and cotyledonary [Fig. 1B]) were collected
during plant regeneration and tested for mPing exci-
sion. Figure 2B shows that at the globular stage, seven
out of 10 lines have a single 778-bp band, indicating
that mPing is still in its original position. However,
three transgenic events (2-9, 3-3, and 2-24) produced
additional 345-bp bands that reflect mPing transposi-
tion from the pPing construct. At the later cotyledon-
ary stage, eight of the 10 lines have the 345-bp band,
indicating an increased capacity for mPing excision
later in embryo development (Fig. 2B). In addition,
cotyledonary-stage somatic embryos from two trans-
genic events show no PCR products with these
primers (Fig. 2B, events 2-9, 2-24). This could be due
to, among other possibilities, the loss of one or both
primer binding sites following mPing excision.

At least three plants were regenerated from tissue
culture for each event and assigned a letter (e.g. event
3-3 plant A). Most regenerated plants tested for mPing
excision by PCR had a single 778-bp product (Fig. 2C).
However, two out of three plants produced from event
2-9 lacked the 778-bp band, but had a smaller band
(295 and 399 bp). The absence of the larger band
indicates that mPing excised from the reporter in all of
the embryogenic cells from which the plant was de-
rived. Five other plants (two from event 2-11 and three
from event 2-10) produced a PCR product with termi-
nalmPing primers but no product withmPing flanking
primers (Fig. 2C). Follow-up PCR using primers to gfp
shows that event 2-10 initially had this region, but it
was lost during generation of plants (Fig. 2D). These
data suggest that a mutation occurred in the mPing
reporter, probably due to excision events that removed
flanking sequences. These results also show that in all

Figure 1. pPing construct and embryo developmental stages. A, Dia-
gram of the Ping- and mPing-containing regions of the pPing plasmid
used for soybean transformation (35Sp, cauliflower mosaic virus 35S
promoter; nost, nopaline synthase terminator; gfp, green florescent
protein). B, Representative images of the two sequential and distinct
developmental stages of soybean embryo tissue culture that were
harvested to test for mPing transposition.
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cases where mPing excised from the reporter, it was
not lost from the genome, but instead, had inserted in a
new location.

Sequencing the lower bands resulting from PCR
with primers flanking the mPing element allowed for
analysis of excision sites. Precise excision was detected
from both repetitive globular and cotyledonary-stage
somatic embryos (Supplemental Fig. S2). However,
30% (7/23) of the excision events resulted in small
deletions (7–32 bp). The excision sites analyzed in
plants 2-9 B and 2-9 C showed a deletion and an in-
sertion, respectively (Supplemental Fig. S2). The prev-
alence of deletions at the excision site, leading to the
loss of sequences flanking the mPing excision site, is
consistent with the lack of PCR products for some
events in Figure 2, B and C.

GFP Expression

The pPing construct is designed to express gfp upon
excision of mPing. Screening the transgenic soybean

lines at both the globular and cotyledonary stage for
GFP fluorescence identified a single event (3-3) with
detectable levels of gfp expression (Fig. 3). The lack of
detectable fluorescence in the other lines shown to
have mPing excision could result from a number of
factors including transposition in a limited number of
cells, disruption of the construct during biolistic trans-
formation, and disruption of the construct after mPing
excision. The use of PCR to test if the entire mPing
reporter was present at the globular stage indicated
that only four of the events had the complete reporter,
including the promoter and terminator (Supplemental
Fig. S3). Of these four, event 3-3 was the only one to
show GFP fluorescence (Fig. 3). Consistent with the
PCR results, event 3-3 showed fluorescence in both the
globular- and cotyledonary-stage embryo. In fact,
when an event 3-3-derived plant was tested for gfp
expression, one out of five meristems showed fluores-
cence, indicating that transposition occurred in one
branch of this plant during its growth (Fig. 3, gfp
expressing leaf shown).

Figure 2. PCR analysis of pPing-con-
taining soybean lines. A, Diagram
showing the position of the primers
used to detect mPing excision (Flank
For and Rev) and the presence of
mPing (mPing 5# and 3#). B, PCR prod-
ucts from two embryo development
stages and leaf tissue from germinated
plants (C). D, PCR results with primers
to part of the gfp gene for globular-
stage embryos (G) and leaf tissue for
selected events. Controls with (+) and
without (2) mPing show the expected
band sizes (778 and 345 bp). NEG,
Untransformed control; M, 100-bp
DNA ladder.
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mPing Insertion

Insertions of mPing in the genome can be detected
by transposon display, a variation of the amplified
fragment length polymorphism technique (Van den
Broeck et al., 1998) whereby each insertion results in a
band on a polyacrylamide gel (Jiang et al., 2003). Plants
produced from nine independently derived pPing
events were tested for mPing transposition (Fig. 4A,
data for three events shown). Eight of the nine events
showed few if any strong unique bands that would
indicate transposition. For example, tissue obtained
from globular-stage embryos and plants derived from
event 3-13 and 3-3 show one to three strong bands per

sample. In contrast, event 2-9 shows a continuum of
bands at the globular stage, and a unique pattern for
all three plants tested (Fig. 4A). Because these plants
were derived from a single cell line, this pattern
indicates that mPing was active during embryo devel-
opment or subsequent growth of the plants.

Figure 4A (right side) also shows the transposon
display results for the 2-9 B T1 progeny, with two
separate leaves tested from each plant (first and third
trifoliolate leaves in adjacent lanes) to allow for differ-
entiation between localized and widespread inser-
tions. Eleven of the darker bands present in the 2-9 B
parent were inherited by the progeny in Mendelian
fashion (numbered arrows). In addition, 2-9 B T1
plants 1 and 8 show strong additional bands (black
arrowheads) that were not observed in the 2-9 B
parent. These unique insertions are present in the
two leaves tested from each plant, indicating the
mPing insertions occurred before the initiation of
both leaves. These insertions must have occurred in
the parental tissues that gave rise to the gametes,
because these plants did not inherit both ORF1 and
TPase. In contrast, progeny numbers 2, 3, 5, and 7 have
both ORF1 and TPase, and show a large number of
relatively weak bands that in most cases are specific to
just one leaf (Fig. 4A, boxed region highlights an
example). The characteristics of these bands are con-
sistent with localized sectors derived from somatic
mPing transposition in the leaves. A similar transpo-
son display was performed for the progeny of plant
3-3 A, showing a single heritable insertion was pro-
duced by this plant (Supplemental Fig. S4).

Cloning and sequencing 79 transposon display
bands verified that most are the expected mPing ter-
minal and adjacent soybean sequence (Supplemental
Table S1). Only one was found to result from mis-
priming to the soybean genome, and two were com-
posed of concatamers of primers. Six of the nine
soybean events did not have a transposon display
band resulting from pPing because there are no MseI
sites close enough to themPing element in the construct.
However, because the pPing vector disintegrated into
several sections during transformation, three events
showed strong ubiquitous bands that correspond to an
untransposed mPing element adjacent to MseI sites in
the soybean genome (see white square in Fig. 4A event
3-3). These are easily distinguished from true trans-
position events by the presence of vector DNA flank-
ing mPing. Sequencing of three faint background
bands present in the negative control indicated that
they result from primer concatenation during the
amplification steps (i.e. fusion of the mPing-specific
primer to the adapter primer or genomic fragment).

To provide additional evidence for reliability of the
transposon display, five mPing insertions identified in
Figure 4Awere verified by PCRwith primers designed
to flank the genomic location of the insertion (Fig. 4B;
Supplemental Table S2). For example, the sequence
of band 1 was used to determine the genomic location
of the mPing insertion, allowing for a primer to be

Figure 3. Images of GFP expression detected in event 3-3 herbicide-
bleached tissue. The globular-stage example contains both normal and
GFP-expressing tissue, while the cotyledonary stage and immature leaf
have untransformed controls for comparison.
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designed that is specific to a region beyond the se-
quence obtained by transposon display. As expected,
PCR with this primer and an mPing-specific primer
shows the same pattern as observed for transposon
display (Fig. 4, A and B). Similarly, primers flanking
both sides of the heritable mPing insertion site from
plant 3-3 A produced a larger (with mPing) and
smaller band (without mPing) that segregated in the
3-3 A progeny (Supplemental Fig. S4B), confirming the
reliability of transposon display and indicating whether

the insertion was present in one or both copies of the
chromosome.

To determine if mPing activity continues in the next
generation, transposon display was performed on 2-9
B T2 plants that contained both the Ping ORF1 and
TPase genes (Fig. 5A). The progeny from each of the
four parents show novel bands that are shared be-
tween multiple siblings, indicating mPing insertions
that occurred in the T1 parent plants after our sam-
pling of the initial leaves. In addition, there is a strong

Figure 4. T0 and T1 progeny analysis.
A, Transposon display results for the
repetitive globular-stage (G) and three
plants (A, B, C) regenerated from the
3-13, 3-3, and 2-9 transgenic events.
Samples 1 thorough 9 are the T1 prog-
eny produced by selfing plant 2-9 B
(the two lanes for each plant are from
DNA isolated from two leaves). Num-
bered arrows indicate insertions that
were present in the 2-9 B plant and
inherited by subsequent progeny. The
white square indicates a band that
results from a nonmobilized mPing-
containing transgene fragment. Black
arrowheads indicate plant-specific in-
sertions. Boxed region indicates exam-
ples of somatic insertion patterns that
are specific to one or the other leaf.
The presence of the TPase and ORF1*
transgenes in each plant are shown
below the transposon display gel (see
Supplemental Fig. S5). B, PCR analysis
of 2-9 B progeny plants using primers
that detect the presence of the mPing
insertions identified by transposon dis-
play. Band numbers correspond to the
numbered arrows above. M, 100-bp
ladder; NEG, untransformed control.
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band present in one of the 2-9 B5 progeny, suggesting
that an insertion occurred either relatively late in the
T1 parent or early in the development of the T2 plant.
A subset of the insertions novel to the T2 generation
was tested by PCR and shown to be consistent with the
transposon display pattern (Fig. 5B). Overall, the ob-
served insertions show that mPing transposition activ-
ity continues during plant growth and produces at
least one new germinal insertion per generation.

Transgene Analysis

The two lines with verified heritable insertions (2-9
and 3-3) were characterized further to determine the

number of copies of the original transgene. PCR anal-
ysis of plant 3-3 A T1 progeny (Supplemental Fig. S6
and additional samples) showed that the ORF1 and
TPase genes show different segregation patterns. How-
ever, the inheritance of these genes is not consistent
with two unlinked loci (n = 28, x2 = 11.6, 3 degrees
of freedom [d.f.], P = 0.009), suggesting that there are
multiple copies of at least one of the transgenes. In
contrast, the segregation of theORF1 and TPase genes in
the 2-9 B T1 progeny is consistent with two unlinked
loci (n = 24, x2 = 2.1, 3 d.f., P = 0.55; Supplemental Fig. S5
and additional samples). Southern-blot analysis of 2-9 B
progeny (Fig. 6) shows that the hph probe hybridizes
with two genomic fragments (approximately 6,000 and

Figure 5. T2 progeny analysis. A, Trans-
poson display of T2 progeny from 2-9
B T1 plants with both the ORF1 and
TPase transgenes. Numbered arrows cor-
respond to the bands present in the
previous generation (Fig. 4). Black ar-
rowheads denote novel insertions and
their genomic locations are indicated on
the right. B, PCR verification of a subset
of the novelmPing insertions. M, 100-bp
ladder; NEG, untransformed control.
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14,000 bp) and the gfp probe hybridizes with a single
approximately 8,000-bp band with a different segrega-
tion pattern than that of hph. Together these data show
that for event 2-9, pPing broke into at least two pieces,
which inserted as separate loci (one with the mPing
donor site and TPase gene, the other harboring the hph
and ORF1 genes). In contrast to the single-copy trans-
gene, hybridization with an mPing probe produced
seven to 12 bands for each plant, implying both trans-
position and increase in copy number.

Insertion Site Analysis

To determine the insertion pattern of mPing in soy-
bean, the location of the mPing insertions were deter-
mined based on the flanking sequences obtained from
transposon display. Four transposon display bands
could not be definitively placed on the published soy-
bean sequence, suggesting they were located in unse-
quenced or repetitive regions. The remaining 72 mPing
insertions from embryo and plants (both germinal and
somatic events) were located at unique sites in the
soybean genome (Supplemental Table S1). Forty eight of
these sites were from the T0, T1, and T2 plants gener-
ated from event 2-9. These insertions are on 18 of the 20
soybean chromosomes, with only three in the annotated
pericentromeric region (Fig. 7). Similarly, 21 insertion
sites from plant 3-3 Awere mapped to 10 chromosomes
with only one pericentromeric insertion.

The sequences flanking the mPing insertions were
used to create a pictogram indicating frequency of each
base at the insertion site (Fig. 8B). To further character-
ize the insertion preference, the observed insertion

locations were categorized according to their insertion
site (i.e. exon, intron, untranslated region [UTR], inter-
genic; Fig. 8A). These results were compared to a
representation of the actual genome composition, cre-
ated by producing 100,000 simulated random inser-
tions into the soybean genome. Eighty-four percent of
the mPing insertions are within 5 kb of a predicted
gene transcript, compared to an expected frequency of
47% if insertion sites were random. There is also a
corresponding reduction in intergenic insertions (.5
kb from a gene) compared to the control (16.4% versus
53.1%). The distribution of the observed insertions is
significantly different from the random insertion pat-
tern (G test; G = 52.934, 6 d.f., P, 0.0001). The majority
of this deviation is due to an overrepresentation of
insertions within 2.5 kb up- or downstream of pre-
dicted transcripts (55.2% versus 17.9%).

As indicated by our insertion preference, a number
of insertions in genes were identified (Supplemental
Table S1). The insertions that were identified in viable
plant lines include exon insertions that may disrupt
function of a 60S ribosomal gene and a gene of un-
known function. In addition, intron and UTR inser-
tions were identified in calmodulin binding, atpob1
homolog, homeobox, peroxidase, and unknown func-
tion genes. Insertions into regions that may contain
promoter sequences (,1,000 bp upstream) were found
for an additional seven genes (Supplemental Table S1).

DISCUSSION

The development of soybean into a model for
legume-specific processes will require the development

Figure 6. Southern-blot analysis of
event 2-9 B progeny. Three identical
sets of DNA (20-22, 24 are T1 gener-
ation, 2-32 is a T2 plant that is homo-
zygous for both hph and Ping TPase)
were probed with DNA from three
separate regions of the pPing plasmid.
NEG, Untransformed control; M, 1Kb+
DNA ladder.
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of improved gene discovery tools, such as transposon
tagging. As mentioned, the transposon-tagging sys-
tems currently available for legumes, Ac/Ds and Tnt1,
have characteristics that limit their widespread use for
gene discovery. In contrast, mPing transposition in
soybean does not exhibit these features. Transposition
of mPing occurred under normal plant growth condi-
tions over at least two generations (Figs. 4 and 5). Also,
the mPing insertions emanating from the mPing re-
porter construct were not limited to linked sites (Fig.
7), consistent with the observation of unlinked trans-
position for somatic events in Arabidopsis (Yang et al.,
2007). These features make it possible to saturate the
genome with insertions by simply growing a popula-
tion of plants with mPing activity, a relatively easy
process compared to the tissue culture required for
Tnt1 transposition or the transformation and crossing
used for Ac/Ds mutagenesis. The relative ease with

which mutants can be generated allows the efforts to
be focused on mutant analysis.

The ability to produce germinal transposition events
is required for tagging because it allows for subsequent
genetic analysis of mutants. To our knowledge, this
study is the first to verify thatmPing produces heritable
insertions in a species other than rice (Figs. 4 and 5).
When different embryo developmental stages (Fig. 2)
were characterized for transposition, more activity was
observed in the cotyledonary stage (8/10 versus 3/10 at
globular stage), suggesting that transposition may oc-
cur preferentially in some developmental stages. If so,
understanding the developmental regulation may in-
dicate ways to control transposition. In the mean time,
this study showed that there is no transposition in
progeny where the genes encoding Ping proteins are
removed by segregation. This is evident in Figure 4 for
the progeny of 2-9 B that lack either of the Ping proteins.
The ability to effectively freeze mPing insertions in the
genome will simplify the genetic analysis of mPing
insertion mutants.

The locations of mPing insertions in soybean (Fig. 8)
have similarities with the insertions observed in rice
(Naito et al., 2009). These include a reduced preference
for intergenic regions and a preference for insertion
into gene-rich regions. The mechanisms underlying
these patterns are unknown; however one possibility
is that mPing preferentially inserts into open chromatin
as has been hypothesized for other elements (Kuromori
et al., 2004; Liu et al., 2009). Chromatin compactness is
directly related to the frequency of nucleosomes, the
basic unit of DNA packing around histone proteins.
Exons show higher nucleosome density than introns
(i.e. Arabidopsis [Chodavarapu et al., 2010)], Caenorhab-
ditis elegans [Valouev et al., 2008], and humans [Schones
et al., 2008]). In rice, mPing exhibits an exon avoidance
mechanism, reducing the exon insertion rate to 14% of
that expected for random insertion, while insertion into
introns is 51% of expected (Naito et al., 2009). This
insertion pattern is consistent with the hypothesis that
chromatin structure affects mPing insertion. However,
another key difference between rice introns and exons
is the average G/C content of only 37% for introns
compared to 51% for exons (Yu et al., 2002). Accord-
ingly, analysis of the mPing flanking sequences shows a
preference for insertion into T/A-rich regions (Fig. 8B;
Naito et al., 2006; Yang et al., 2007; Hancock et al., 2010).
If the preference for insertion into T/A-rich sequences
is involved in exon avoidance, a greater number of
insertions into exons is expected in genomes like soy-
bean that have exons with lower G/C content than rice
(43% versus 51%, respectively; Yu et al., 2002; Tian et al.,
2004). In fact, comparing our sampling of soybean
insertions to the expected number under the random
insertion model shows no significant exon avoidance
(x2 = 0.002, d.f. = 1, P . 0.9), unlike in rice where the
exon avoidance is highly significant (x2 = 81.2, d.f. = 1,
P , 0.0001; Naito et al., 2009).

The observed rate of mPing insertions into genes
normalized to gene density is comparable to the

Figure 7. mPing insertion sites: Location of mPing insertion sites
(arrowheads) in the soybean genome identified from both globular-
stage embryos and leaf tissue for two transgenic lines (event 2-9 and
3-3). Gray = pericentromeric regions, dark circle = centromere. [See
online article for color version of this figure.]
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normalized genic insertion rates of other commonly
used transposon-tagging tools (Supplemental Table
S3; Tissier et al., 1999; Courtial et al., 2001; d’Erfurth
et al., 2003; Kuromori et al., 2004; Tadege et al., 2008).
However, the characteristic that gives mPing an ad-
vantage is its preference for insertion near genes
(51.4% of insertions are within 2.5 kb; Fig. 8A). This
preference is ideal for activation tagging, which up-
regulates expression by placing enhancer sequences
in close proximity. An mPing-based activation tag
should be particularly advantageous for determining
the gene function in species like soybean, which has a
high degree of genome duplication. While its ability
to be modified to serve as an activation tag still
remains to be investigated, there is no a priori reason
why it should not work, as has been achieved with
the Ds element (Qu et al., 2008). If successfully de-
veloped into an activation tag, then mPing will be an
incomparable resource for transposon mutagenesis
for crop genomics.

CONCLUSION

The mPing miniature inverted repeat transposable
element produces heritable insertions in soybean over
multiple generations. It retains the transposition charac-
teristics that are favorable for transposon tagging. These
advantages include the ability to produce unlinked

insertions without tissue culture and the strong prefer-
ence for insertion in and near genes. Thus, mPing ap-
pears to overcome most of the limitations that impede
other transposon-tagging systems in place today and
will facilitate gene identification in soybean.

MATERIALS AND METHODS

Vector Construction and Transformation

The pPing vector was constructed by subcloning theHindIII-SacI fragment

from the pICDS-mP plasmid (Yang et al., 2007) into a SacI site that precedes a

nos terminator in the pUHN4 vector (includes a StUbi3 promoter: hph gene: nos

terminator selectable marker; Joshi et al., 2005). Somatic embryos from

soybean (Glycine max) cultivar Jack (Nickell et al., 1990) were prepared and

transformed as described by Trick et al. (1997), with modifications. Three

plates of repetitive globular-stage embryos were bombarded at 7,584 kPa

(1,100 c) with 42 ng of plasmid DNA precipitated on 0.55 mg of 0.6-mm

diameter Au. Transgenic lines were selected using FNL medium (Samoylov

et al., 1998) supplemented with 20 mgmL21 hygromycin-B. Selected lines were

given an event number (shot number-event number) and their transgenic

status verified by PCR before plant regeneration. Cotyledonary-stage embryos

were produced in SHaMmedium (Schmidt et al., 2005), desiccated for 1 week,

and germinated on MSO medium as described by Parrott et al. (1988).

PCR Analysis

Genomic DNA was purified using the C-TAB method (Murray and

Thompson, 1980), quantitated with the fluorescent DNA quantitation kit (Bio-

Rad), and diluted to 5 ng mL21. GO Taq polymerase (Promega) was used for

PCR genotyping (10 ng genomic DNA per reaction). The DNA of all samples

was tested for quality by ensuring it was possible to amplify the soybean lectin

Figure 8. Insertion site analysis. A, Histogram
comparing the observed mPing insertion fre-
quency to randomly generated insertions in the
soybean genome. B, Pictogram representing the
frequency of each nucleotide at the mPing inser-
tion sites in soybean and rice (Naito et al., 2006).
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gene (Le1; Goldberg et al., 1983). See Supplemental Table S2 for primer

sequences. The 100-bp DNA ladder was from Invitrogen. Excision site analysis

was performed by gel purifying the excision site amplicon and cloning into the

pGEM t-Easy vector (Promega) for sequencing.

Southern-Blot Analysis

Ten micrograms of RNase-A-treated genomic DNA were digested with

HindIII (cuts once in the pPing plasmid) and separated on a 0.8% agarose TAE

gel together with a 1Kb+ DNA ladder (Invitrogen). DNAwas transferred by

capillary action to a z-Probe GT nylon membrane (Bio-Rad) according to the

manufacturer’s instructions and UV cross-linked. Probes weremade using the

following primers: mPing: mPing 5# and mPing 3#, gfp: GFP Check For and

Nost Rev, hph: UbiqF and Hyg938R (Supplemental Table S2). After 5 h of

prehybridization (1 mM EDTA, pH 8.0; 0.5 M Na2HPO4; 7% SDS; 1% bovine

serum albumin) at 65�C, hybridization with approximately 25 ng of 32P-

labeled probe made with the RediPrime II random prime labeling system (GE

Healthcare) and purified using Micro Bio-Spin 6 chromatography columns

(Bio-Rad) was performed overnight. The membranes were washed with 5%

and 1% SDS in 40 mM Na2HPO4 at 65�C prior to autoradiography.

GFP Microscopy

Cotyledonary and repetitive globular-stage embryos were bleached using

10 mg L21 isoxaflutol (Sigma cat. no. 46437) as described by Wu et al. (2008) to

eliminate autofluoresence from chlorophyll. Images were acquired using a

HQ 470/40 excitation filter and 515 LP emission filters.

Transposon Display

Transposon display was performed as described by Van den Broeck et al.

(1998). Two-hundred nanograms of genomic DNA were digested in a 50-mL

reaction with MseI or BfaI and ligated to an adapter oligo (TD AdapterF:

GACGATGAGTCCTGAG, TD AdapterR: TACTCAGGACTCAT). In most

cases, MseI was used for digestion because it does not allow amplification

of the original transgene due to the lack of a restriction site near the 5# end of

mPing in the pPing construct. After a 1:4 dilution with water, 1.5 mL of the

reaction were used for a 20-mL PCR reaction (Amplitaq, Applied Biosystems)

using mPing P5: AAATGTGCATGACACACCAG and adapter primer: GAC-

GATGAGTCCTGAGTA. Then 1.5 mL (diluted 1:100 or 1:1,000 with water)

were used for a second round of PCR with the adapter primer and 33P-

radiolabeled mPing P6 primer: GTGAAACCCCCATTGTGACTGG. The reac-

tion was analyzed by electrophoresis on a 6% polyacrylamide gel and

autoradiography. To reduce the background for the figures, the primary

amplification was performed with a 5# biotinylated mPing P5 primer and the

resulting PCR products were purified using Dynabeads M-270 Streptavidin

(Invitrogen) according to the manufacturer’s recommendations. Bands of

interest were rehydrated, excised from the gel, reamplified using themPing P6

and adapter primers, and cloned in to the pGEM t-Easy vector (Promega) for

sequencing.

Mapping/Computational Analysis

Insertions were mapped by using BLAST to align the flanking sequence

with the Glyma 1 chromosome-scale assembly of the soybean genome

(http://www.phytozome.net/soybean). The target site preference was gen-

erated using WebLogo 3 at http://weblogo.threeplusone.com/ (Crooks et al.,

2004). The random insertion set was produced by randomly generating

100,000 coordinates across the 20 chromosomes. Information on the surround-

ing sequence was parsed using the Glyma1_highConfidence.gff2.gz (5/27/09)

file downloaded from the Phytozome Web site (http://www.phytozome.net/

soybean). If the coordinate was within an annotated gene (feature type

mRNA), it was further categorized as being in the 5# or 3# UTR, or an exon

(CDS). If it fell within anmRNA region, but not UTR or exon, the insertion was

scored as an intron. If the coordinate was not within a gene, the distance to the

nearest mRNAwas recorded. Coordinates .5 kb from a gene were recorded

as intergenic. Statistical comparison between the observed number and

expected was conducted with a G test (Skola and Rohlf, 1995), using the

following categories: intergenic 1 to 2,500 bp upstream, 2,501 to 5,000 bp

upstream, 1 to 2,500 downstream, 2,501 to 5,000 bp downstream, exon, and

intron + UTR. The G score was compared to the x2 distribution with 6 d.f.
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The following materials are available in the online version of this article.
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Supplemental Figure S2. Excision site analysis.

Supplemental Figure S3. PCR detection of the mPing gfp reporter.
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